Geosyntec Consultants

"Smart" Stormwater Management Village of Carol Stream's Kimberly North Stormwater Study

Gregory R. Ulreich, P.E., CFM Rishab Mahajan, P.E., CFM, CPSWQ

September 2, 2022

Background

Methodology (EPA SWMM)

"Smart" Stormwater Management

Conclusions

Background

- History of Stormwater Management in Village
- Klein Creek Watershed / Study Area
- May 2020 Flood Event
- Water Level Loggers

Hist	ory								S.	ې ۲ ۲
	Villa Stormv Study	ge vater y &	Du Cou Coun	Page inty's K tywide V	DuPage County's lein Creek Vatershed					
Village Incorporated	Stormv Ordina Enact	vater ance Fl ted E	ood Ordi vent Ena	nwater nance icted Co	Study & Flood ontrol Plan	Flc Ev	ood ent	Flood Event	ISV Bullet Publis	VS in 75 shed
19	72	1978	1991	1993	20	000	2010	2(015	2020
1959	197	73 1	987 19	991	1994	20	008	2013	202	20
Flood	Event	FEMA FIRM Effective	Cumulative Detention (1,431 ac-ft)	Phase I: Channel Improvemer	Pha Gary- nts Rese	se II: Kehoe ervoir	Flood Event	Adder Armsti Res	ndum 02 rong Park servoir	Flood Event
				(13 ac-ft)	(124	ac-ft)		(115	ac-ft)	

Klein Creek Watershed

Kimberly North Detention Basins

May 2020 Flood Event

May 2020 Flood Event

3.82 in - May 15, 2020 02:05:00 AM CDT

Precipitation, total, in 🖲

72 hours -> 6.3 in -> 10 yr

24 hours -> 4.0 in -> 5 yr

2 hours -> 2.8 in -> 10 yr

Water Level Loggers

6

Methodology (EPA SWMM)

- Model Framework
- Model Development
- Model Calibration
- Alternative Analysis

consultants

Modeling Framework

(学)
(学)

- Developed a Storm Water Management Model (SWMM) to simulate existing conditions
 - Continuous Simulation
 - Hydrology
 - Hydraulic
 - Real-Time Controls
- Calibrated model to measured data
- Used the model to evaluate alternatives to mitigate flooding

Model Development

Bare Earth DEM with sewer network overlaid

DEM with sewer network burned

Delineated subwatersheds with storm sewer network in GIS

Model Development

Delineated subwatersheds with storm sewer network in GIS

SWMM Model

Model Development

May 2020 storm

Green - Ampt Infiltration

Model Calibration – 285 E Fullerton

Model Calibration – 245 E. Fullerton

Model results match the observed data well

Alternative Analysis

Traditional Solutions

"Smart" Stormwater Management (aka Real Time Control)

"Smart" Stormwater Management

- EPA SWMM CONTROL RULES
- MAY 2020 STORM SIMULATIONS
- STORAGE UTILIZATION

consultants

EPA SWMM CONTROL RULES

Rule Format

Each c	ontrol rule is a series of statements of the form:
ULE	ruleID
IF AND OR AND Itc.	condition_1 condition_2 condition_3 condition_4
HEN MD Itc.	action_1 action_2
LSE AND Itc.	action_3 action_4
RIOR	ITY value

Some examples of condition clauses are:

NODE N23 DEFTH > 10 NODE N23 DEFTH > NODE 25 DEFTH PUMP P45 STATUS = OFF LINK P45 TIMEOPEN >= 6:30 SIMULATION CLOCKTIME = 22:45:00

The objects and attributes that can appear in a condition clause are as follows:

Object	Attributes	Value
NODE	DEPTH HEAD VOLUME INFLOW	numerical value numerical value numerical value numerical value
LINK	FLOW DEPTH TIMEOPEN TIMECLOSED	numerical value numerical value decimal hours or hr:min decimal hours or hr:min

GEOSYNTEC CONSULTANTS

Control Rules Editor

RULE 245A IF SIMULATION DATE <= 05/15/2020 THEN ORIFICE 245_0283600 SETTING = 0.3 ELSE ORIFICE 245_0283600 SETTING = 1.0

RULE 319A IF NODE 319 HEAD > 790 THEN ORIFICE 319_02885669 SETTING = 1.0 ELSE ORIFICE 319_02885669 SETTING = 0.0

RULE 319B IF SIMULATION DATE >= 05/19/2020 THEN ORIFICE 319_02885669 SETTING = 1.0 PRIORITY 5

RULE 319C IF SIMULATION DATE >= 05/14/2020 THEN WEIR 319_INTERNALWEIR1 SETTING = 0.0 PRIORITY 5

RULE 319D IF SIMULATION DATE >= 05/14/2020 THEN WEIR 319_INTERNALWEIR2 SETTING = 0.0 PRIORITY 5

RULE 465A IF NODE 465 HEAD > 800.5 THEN ORIFICE 465_02865709 SETTING = 0.1 ELSE ORIFICE 465_02865709 SETTING = 0.0 PRIORITY 1

STORAGE UTILIZATION

*Emergency weir flow occurs @ >80%

Conclusions

- Using EPA SWMM's Control Rules is "easy"!
- "Smart" Stormwater Management (aka Real Time Controls) could have eliminated flooding on May 15, 2020 (10-Year Recurrence Interval).
- Existing storage and conveyance infrastructure does not change; just need to retrofit the restrictors.
- The utilization rate (by volume) of the existing
 stormwater management facilities nearly doubled.
- Maximum effectiveness is most likely to be in the recurrence intervals between 10 and 25 years.

Geosyntec[▷]

consultants

Long-Term Projects

PRESENTATION & EPA SWMM FILES

https://nextcloud.carolstream.org/index.php/s/LYJecpzWQwfRCKb

Gregory R. Ulreich, P.E., CFM Civil/Stormwater Engineer | Dept. of Engineering Services Village of Carol Stream gulreich@carolstream.org

Rishab Mahajan, P.E., CFM, CPSWQ Senior Engineer Geosyntec Consultants rmahajan@geosyntec.com

UIC Senior Design Project Presentation

https://engineeringexpo.uic.edu/news-stories/cme-05-kimberly-north-detention-system-optimization/